Probability Theory
2016/17 Semester IIb
Instructor: Daniel Valesin
Final Exam
22/6/2017
Duration: 3 hours

This exam contains 9 pages (including this cover page) and 7 problems. Enter all requested information on the top of this page.

Your answers should be written in this booklet. Avoid handing in extra paper.
You are allowed to have two hand-written sheets of paper and a calculator.
You are required to show your work on each problem.
Do not write on the table below.

Problem	Points	Score
1	14	
2	14	
3	14	
4	14	
5	10	
6	14	
7	10	
Total:	90	

Standard Normal cumulative distribution function The value given in the table is $F_{X}(x)$ for $X \sim \mathcal{N}(0,1)$.
$\begin{array}{lllllllllll}x & 0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09\end{array}$
$0.0 \quad 0.50000 .50400 .50800 .51200 .51600 .51990 .52390 .52790 .53190 .5359$
$0.1 \quad 0.53980 .54380 .54780 .55170 .55570 .55960 .56360 .56750 .57140 .5753$
$0.2 \quad 0.57930 .58320 .58710 .59100 .59480 .59870 .60260 .60640 .61030 .6141$
$0.3 \quad 0.61790 .62170 .62550 .62930 .63310 .63680 .64060 .64430 .64800 .6517$
$0.4 \quad 0.65540 .65910 .66280 .66640 .67000 .67360 .67720 .68080 .68440 .6879$
0.50 .69150 .69500 .69850 .70190 .70540 .70880 .71230 .71570 .71900 .7224
$0.6 \quad 0.72570 .72910 .73240 .73570 .73890 .74220 .74540 .74860 .75170 .7549$
$0.7 \quad 0.75800 .76110 .76420 .76730 .77030 .77340 .77640 .77940 .78230 .7852$
$0.8 \quad 0.78810 .79100 .79390 .79670 .79950 .80230 .80510 .80780 .81060 .8133$
$0.9 \quad 0.81590 .81860 .82120 .82380 .82640 .82890 .83150 .83400 .83650 .8389$
$1.0 \quad 0.84130 .84380 .84610 .84850 .85080 .85310 .85540 .85770 .85990 .8621$
1.10 .86430 .86650 .86860 .87080 .87290 .87490 .87700 .87900 .88100 .8830
$1.2 \quad 0.88490 .88690 .88880 .89070 .89250 .89440 .89620 .89800 .89970 .9015$
$1.3 \quad 0.90320 .90490 .90660 .90820 .90990 .91150 .91310 .91470 .91620 .9177$
$1.4 \quad 0.91920 .92070 .92220 .92360 .92510 .92650 .92790 .92920 .93060 .9319$
$1.5 \quad 0.93320 .93450 .93570 .9370 \quad 0.93820 .93940 .94060 .94180 .94290 .9441$
$1.6 \quad 0.94520 .94630 .94740 .94840 .94950 .95050 .95150 .95250 .95350 .9545$
1.700 .95540 .95640 .95730 .95820 .95910 .95990 .96080 .96160 .96250 .9633
$1.8 \quad 0.96410 .96490 .96560 .96640 .96710 .96780 .96860 .96930 .96990 .9706$
$1.9 \quad 0.97130 .97190 .97260 .97320 .97380 .97440 .97500 .97560 .97610 .9767$
$2.0 \quad 0.97720 .97780 .97830 .97880 .97930 .97980 .98030 .98080 .98120 .9817$
$2.1 \quad 0.98210 .98260 .98300 .98340 .98380 .98420 .98460 .98500 .98540 .9857$
$2.2 \quad 0.98610 .98640 .98680 .98710 .98750 .98780 .98810 .98840 .98870 .9890$
2.300 .98930 .98960 .98980 .99010 .99040 .99060 .99090 .99110 .99130 .9916
$2.4 \quad 0.99180 .99200 .99220 .99250 .99270 .99290 .99310 .99320 .99340 .9936$
2.50 .99380 .99400 .99410 .99430 .99450 .99460 .99480 .99490 .99510 .9952
$2.6 \quad 0.99530 .99550 .99560 .99570 .99590 .99600 .99610 .99620 .99630 .9964$
$2.7 \quad 0.99650 .99660 .99670 .99680 .99690 .99700 .99710 .99720 .99730 .9974$
$2.8 \quad 0.99740 .99750 .99760 .99770 .99770 .99780 .99790 .99790 .99800 .9981$
2.900 .99810 .99820 .99820 .99830 .99840 .99840 .99850 .99850 .99860 .9986
$3.0 \quad 0.99870 .99870 .99870 .99880 .99880 .99890 .99890 .99890 .99900 .9990$
3.10 .99900 .99910 .99910 .99910 .99920 .99920 .99920 .99920 .99930 .9993
$3.2 \quad 0.99930 .99930 .99940 .99940 .99940 .99940 .99940 .99950 .99950 .9995$
3.30 .99950 .99950 .99950 .99960 .99960 .99960 .99960 .99960 .99960 .9997
$3.4 \quad 0.99970 .99970 .99970 .99970 .99970 .99970 .99970 .99970 .99970 .9998$
3.50 .99980 .99980 .99980 .99980 .99980 .99980 .99980 .99980 .99980 .9998
3.60 .99980 .99980 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .9999
3.70 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .9999
$3.8 \quad 0.99990 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .99990 .9999$
3.91 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001 .0000

1. (a) (7 points) In how many ways can we distribute m indistinguishable candies to k distinguishable children, assuming $m \geq k$ and each child gets at least one candy?
(b) (7 points) Half the lamps produced by a factory are of good quality and half of bad quality. The lifetime (in months) of a good-quality lamp is an exponential random variable with parameter $\beta=2$, and the lifetime of a bad-quality lamp is an exponential random variable with $\beta=1$. Assume that you pick a lamp at random in the factory, install it and, after t months, it is still working. Let $p(t)$ be the probability that you now attribute to having picked a good-quality lamp. Find the limit of $p(t)$ as $t \rightarrow \infty$.
2. (a) (7 points) The discrete random variables X and Y are jointly distributed as follows. X follows the Poisson (λ) distribution, and

$$
f_{Y \mid X}(y \mid x)=\binom{x}{y} p^{y}(1-p)^{x-y}, \quad x \in\{0,1, \ldots,\}, y \in\{0, \ldots, x\}
$$

where $p \in(0,1)$. Show that the distribution of Y is $\operatorname{Poisson}(\lambda p)$.
(b) (7 points) The continuous random variables Z and W are independent, with Z following the exponential distribution with parameter 1 and W following the (continuous) uniform distribution on $(0,1)$. Find $\mathbb{P}(Z<W<3 Z)$.
3. Let A be a set with n elements. Assume that we choose a subset of A at random according to the rule that the probability that a certain subset A^{\prime} is chosen is proportional to the number of elements of A^{\prime}. Let X be the number of elements of the subset we choose.
(a) (7 points) Find the probability mass function of X.
(b) (7 points) Prove that

$$
M_{X}(t)=e^{t}\left(\frac{e^{t}+1}{2}\right)^{n-1}, \quad t \in \mathbb{R}
$$

4. (a) (7 points) A device has lifetime denoted by T, which follows an exponential distribution with parameter $\beta=1.5$. The device has value $V=5$ if it fails before $t=3$; otherwise, it has value $V=2 T$. Find the cumulative distribution function of V.
(b) (7 points) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables, all following an exponential distribution with parameter β. Let

$$
Y=\max \left\{X_{1}, \ldots, X_{n}\right\}
$$

that is, Y is equal to the largest among the values X_{1}, \ldots, X_{n}. Find the cumulative distribution function of Y.
5. Let X be a random variable with expectation μ_{X} and variance σ_{X}^{2}, and Y a random variable with expectation μ_{Y} and variance σ_{Y}^{2}. Let $\rho_{X, Y}$ be the correlation between X and Y. Express the following quantities in terms of $\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}$, and $\rho_{X, Y}$.
(a) (5 points) $\operatorname{Var}(X-3 Y)$;
(b) $(5$ points $) \mathbb{E}((3 X-5)(2 Y+1))$.
6. (a) (7 points) Let X_{1}, X_{2}, \ldots be independent and identically distributed random variables with finite expectation and variance. Let $Z_{i}=X_{i}+X_{i+1}$, for $i=1,2, \ldots$. Show that $\bar{Z}_{n}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$ converges in probability to a constant, and identify this constant.
(b) (7 points) Let Y_{1}, Y_{2}, \ldots be independent and identically distributed positive random variables with finite expectation μ and finite variance σ^{2}. For each natural number n, let W_{n} be the largest value of k for which the following inequality holds:

$$
\sum_{i=1}^{k} Y_{i} \leq n
$$

Show that W_{n} / n converges in probability to $1 / \mu$.
Hint. Use the facts that $\left\{W_{n}>x\right\} \subseteq\left\{\sum_{i=1}^{\lfloor x\rfloor} Y_{i}<n\right\},\left\{W_{n}<x\right\} \subseteq\left\{\sum_{i=1}^{\lceil x\rceil} Y_{i}>n\right\}$.
7. (10 points) At each time instant $t=0,1,2, \ldots$, a particle occupies a position in the set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$. Assume that the initial position is 0 and, from time t to time $t+1$, the particle moves:

- one unit to the left with probability $1 / 3 ;$
- one unit to the right with probability $1 / 6$;
- two units to the right with probability $1 / 2$.

Find a value k such that the probability that the particle is to the left of k at time 10000 is approximately 70%.
If you don't have a calculator, you may use the approximation: $\sqrt{65} \approx 8.06$.
Note that a table for the cumulative distribution function of the standard normal distribution is provided on page 2 .

